Iterative Improvement Algorithms for the Blocking Job Shop

نویسندگان

  • Angelo Oddi
  • Riccardo Rasconi
  • Amedeo Cesta
  • Stephen F. Smith
چکیده

This paper provides an analysis of the efficacy of a known iterative improvement meta-heuristic approach from the AI area in solving the Blocking Job Shop Scheduling Problem (BJSSP) class of problems. The BJSSP is known to have significant fallouts on practical domains, and differs from the classical Job Shop Scheduling Problem (JSSP) in that it assumes that there are no intermediate buffers for storing a job as it moves from one machine to another; according to the BJSSP definition, each job has to wait on a machine until it can be processed on the next machine. In our analysis, two specific variants of the iterative improvement meta-heuristic are evaluated: (1) an adaptation of an existing scheduling algorithm based on the Iterative Flattening Search and (2) an off-the-shelf optimization tool, the IBM ILOG CP Optimizer, which implements Self-Adapting Large Neighborhood Search. Both are applied to a reference benchmark problem set and comparative performance results are presented. The results confirm the effectiveness of the iterative improvement approach in solving the BJSSP; both variants perform well individually and together succeed in improving the entire set of benchmark instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid algorithms for Job shop Scheduling Problem with Lot streaming and A Parallel Assembly Stage

In this paper, a Job shop scheduling problem with a parallel assembly stage and Lot Streaming (LS) is considered for the first time in both machining and assembly stages. Lot Streaming technique is a process of splitting jobs into smaller sub-jobs such that successive operations can be overlapped. Hence, to solve job shop scheduling problem with a parallel assembly stage and lot streaming, deci...

متن کامل

An Iterated Greedy Algorithm for Solving the Blocking Flow Shop Scheduling Problem with Total Flow Time Criteria

In this paper, we propose an iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time minimization objective. The steps of this algorithm are designed very efficient. For generating an initial solution, we develop an efficient constructive heuristic by modifying the best known NEH algorithm. Effectiveness of the proposed iterated greedy algorithm is t...

متن کامل

A NeuroGenetic Approach for Multiprocessor Scheduling

This chapter presents a NeuroGenetic approach for solving a family of multiprocessor scheduling problems. We address primarily the Job-Shop scheduling problem, one of the hardest of the various scheduling problems. We propose a new approach, the NeuroGenetic approach, which is a hybrid metaheuristic that combines augmented-neural-networks (AugNN) and genetic algorithms-based search methods. The...

متن کامل

Optimality of the flexible job shop scheduling system based on Gravitational Search Algorithm

The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...

متن کامل

A Rollout Metaheuristic for Job Shop Scheduling Problems

In this paper we deal with solution algorithms for a general formulation of the job shop problem, called alternative graph. We study in particular the job shop scheduling problem with blocking and/or no-wait constraints. Most of the key properties developed for solving the job shop problem with infinite capacity buffer do not hold in the more general alternative graph model. In this paper we re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012